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With the introduction of the concept of total variation diminishing scheme (TVD), a variety 
of numerical schemes using this approach have emerged. For steady state calculations, two 
particular TVD schemes have proved popular, i.e., the Yee symmetr ic and the 
Osher-Chakravarthy upwind TVD schemes. When applied to Euler equations, these two 
schemes give almost identical results. However, when they are employed to solve 
Navier-Stokes equations, the authors found dramatic differences especially when high 
Reynolds number viscous flow is tackled. In one viscous flow calculation, the Yee scheme gave 
an “unrepresentative” result while Osher-Chakravarthy scheme gave the “physical” result. The 
paper demonstrates that the numerical dissipation embedded in the schemes may  be the cause. 
Modifications, therefore, are suggested to make Yee’s scheme less dissipative so that it is much 
more suitable for viscous flow calculations. The numerical experiments do favor the modified 
scheme. Osher-Chakravarthy TVD scheme and the modified Yee scheme are recommended 
for viscous flow calculation at high Reynolds number. :n 1991 Academx Press, Inc 

1. INTRODUCTION 

Considerable progress has been  made  in the numerical computation of com- 
pressible flow as a  result of the development of more efficient, robust methods for 
solving the Euler and  Navier-Stokes equations. Amongst others, the development 
of total variation diminishing (TVD) schemes [ 1  ] has constituted one  of the ma jor 
thrusts forward in CFD. Although TVD schemes are designed for transient applica- 
tions, they also have been  applied to steady state problems with great success. It is 
well known that even if explicit schemes are easy to implement, they suffer severe 
restrictions in the choice of time  step and  thus are less efficient than their implicit 
counterparts. It is also true that it is inappropriate to extend the second-order 
Lax-Wendroff  method to implicit schemes because the steady state is found to 
depend  on  the time  step. This paper  addresses only steady state calculations, so 
only acceptable implicit schemes are considered. Osher and  Chakravarthy [3] 
derived a  family of high-order upwind TVD schemes whcih can be  third-order 
accurate. More recently, Yee [4] general ized the works of Davis [S] and  Roe [6] 
and  introduced the concept of the symmetric TVD scheme, which in some cases is 
easier to implement than the Osher-Chakravarthy family, All these schemes have 
the property of avoiding spurious oscillations near  sharp gradients and  thus have 
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been proved to be very robust for hypersonic problems with strong discontinuities 
such as shock waves, etc. Numerical experiments choosing the one-dimensional 
inviscid flow problem demonstrated that these schemes have the capacity to give 
high resolution for shock waves and have the advantage of giving satisfactory solu- 
tions on coarse grids. A straight extension of this approach of applying the one- 
dimensional scheme for each direction in multidimensional problems also has given 
quite satisfactory results. Comparisons have been made between a variety of the dif- 
ferent TVD schemes [4, 73. The conclusion is that they are almost identical in their 
shock capturing abilities when applied to inviscid flow computations. However, 
much still has to be done to test their capacities for resolving the viscous shear layer 
especially in multidimensional cases. This paper outlines work carried out by the 
authors to advance this topic. Early tests showed that dramatic differences were 
found especially when viscous solutions with high Reynolds number are sought. It 
has been found that the Yee symmetric TVD scheme has more dissipation than is 
required to resolve the viscous boundary layer, whereas the Osher-Chakravarthy 
TVD scheme gave far better resolution of the viscous shear layer. It was the 
investigation of the differences between these two schemes that resulted in the work 
of this paper. 

The layout of this paper will be as follows. In Section 2, Harten’s TVD concept 
and the sufficient conditions for both explicit and impliciet schemes to be TVD are 
reviewed. Then this set of conditions are used to derive a general TVD scheme and 
a principle of constructing upwind-biased second-order TVD scheme is developed. 
In Section 3, both the Osher-Chakravarthy and the Yee schemes are checked to see 
that they are TVD schemes. Comparisons are made which showed that the Yee 
TVD scheme is more dissipative than the Osher-Charkravarthy TVD schemes. 
Modifications to make Yee’s scheme less dissipative are suggested. In Section 4, 
some results obtained from the application of these schemes in both inviscid and 
viscous flow calculations are discussed. Conclusions arising from the study are 
given in Section 5. 

2. REVIEW OF TVD CONCEPT AND A GENERALIZATION FORM TVD SCHEME 

Consider the scalar hyperbolic conservation law 

au 3f(4=o at+- ax ' 4x, 0) = %(Xh (2.1) 

where f is called the flux and a(u) = af/au is the characteristic speed. A general 
explicit and implicit scheme in conservative form can be written 

(2.2) 

where 0 <q < 1, 1= At/Ax, with At the time step, and Ax the mesh size. Here 
UT is a numerical solution of (2.1) at x=j As and t =n At, hi+,!>= 



TVD SCHEMES FOR STEADY FLOW SOLUTION 55 

h("j--13 uj2 u.,+l, uj+2), and h is a numerical flux function consistent with the 
conservation law in the following sense: 

h("j, u,, ui> u.j) =.fC”j). (2.3) 

When rf = 0, (2.2) reduces to an explicit scheme. When u] # 0, (2.2) is an implicit 
scheme. For example, if yf = 4, the time differencing is the trapezoidal formula, and 
if q = 1, the time differencing is the backward Euler method. 

It is commonly known that any weak solution of (2.1) has a non-increasing 
variation. When a numerical solution is sought, we also require that the variation 
of the discretised solution is diminishing. The total variation, TV(u”+ ‘), of the 
solution is defined by 

TV(zP+‘)=~ lu;$ -.;+‘I (2.4) 

and so for total variation diminishing (TVD) schemes, the following condition must 
be satisfied: 

TV(u”+‘)<TV(u”). (2.5) 

If the numerical flux h in (2.2) is Lipschitz continuous then (2.2) can be written 
as 

where AU,+ 112 = u,+ 1 - u,, and Cj, I/2, Djk l/2 are some bounded function of (uj}. 
Harten further showed that sufficient conditions for (2.5) are 

(a) if for all j, 

A(1 -4)C,+,/2>0 and ~(1-'W,+,/2>/0 

‘~(1 -?)(Cj+ 112 + D;+ L/2) < 1 
(2.7~~) 

and 
(b) if for ail j, 

- co-cc< -iyc,+,,,<o and -co<Cd -iqD,+,,,fO (2.7b) 

for some finite C. 
For simplicity of discussion, we consider c = 8flau = const, i.e., the linear wave 

equation 

u, + cu., = 0, c > 0. (2.8 1 
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For steady state computations, the numerical flux function 

h. ,+1,2=:4u, +y+,)41 -d~,)lC~~,+,,, (2.9a) 

is considered with 

Aup 1/2 ri =du,,liz (2.9b) 

and q is some function of r called a lim iter. Several special schemes included in 
(2.9) are noted as follows. If q(r) = 0, the resultant scheme is a first-order upwind 
scheme. We call this lim iter q’. If q(r) = 1, the resultant scheme is a central 
difference second-order scheme (in space). Let this lim iter be called q’. If q(r) = Y, 
the resultant scheme is upwind second order. Let this lim iter be called q”. If 
q(r) = 2/3 + r/3, the resultant scheme is third-order accurate. Let this lim iter be 
called q’. 

According to the physics of wave propagation, only the upwind stream affects 
the current position. An upwind scheme, therefore, is highly desired in the wave 
modeling. In fact, any upwind-biased second-order scheme utilizing ujpz, ujp r, 
uj3 uj+ 1 is a weighted average of the central difference and upwind second-order 
scheme. So for any second-order scheme, the lim iter should satisfy 

4(r) = e(r) q’(r) + (1 - e(r)) q’(r) 

=O(r)+(l-O(r))r=r+t)(r)(l-r) (2.10) 

with 0 d O(r) d 1, i.e., interpolation. Numerical experiments have shown that 
extrapolation causes over-compression and/or instability. 

This family contains implicit as well as explicit schemes and, also, first- as well 
as second-order schemes. As a result of the fact that the time difference and space 
difference are discretised separately, they also have the advantage that the solution 
is independent of the time step and that the order of accuracy in space is solely 
decided by the numerical flux functions when the steady state is achieved. Now we 
further look into the numerical flux function (2.9a). When (2.9) is substituted into 
(2.2), the first term contributes to the discretization of Axe au/ax to second-order 
accuracy without any numerical dissipation. The second term acts as a numerical 
dissipation term. When q(r) < 0, the scheme would be more dissipative than the 
first-order scheme. When q(r) > 1, some negative dissipation is added so that waves 
are usually compressed by the scheme. Possible non-physical solutions would result. 
It is noticed that when q(r) = 1 (i.e., central difference) no additional numerical 
dissipation is embedded in the scheme. This is a very desirable property when 
it is used to model the viscous flows at high Reynolds number. In fact, Eq. (2.9) 
can be rewritten in the form as (2.6) with 

ci + l/Z  = O, D, 1,2 = CC1 + Iq(rj)lr, - fq(r,- *)I. (2.11) 
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Now sufficient conditions for (2.9) to be TVD are 

l +~q(rj)/r,-tq(rj~,)~o 

and 

Ci(l-q)[l +~q(rj)/ri-tq(r,~,)]~ l* 

If we let 

46-J = 03 if rj < 0 

4trj) > O9 otherwise. 

Then we always have 

q(rj)/rj 3 0. 

Under these conditions, the following sufficient conditions are obtained 

0 d q(Vj) d 2 

0 G  drj)Ir., G  
2 

1x( 1 - ‘I) - 2. 

Let 

2 
W l -VI 

-2=k. 

We should always have 

1 
k z 0; i.e., 1. d ___ 

41 - rl)’ 

57 

(2.12a) 

(2.12b) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

Figure 1 shows the TVD region with c( = tan-‘(k). Also displayed are the q func- 
tions needed to give the central difference and upwind second-order schemes and 
the third-order scheme. It is clear that for any upwind-biased second-order schemes, 
their limiters should lie between the two lines q = 1 and q = r. We notice that the 
following limiter will give the most compressive second-order TVD scheme: 

i 

0, r<O 

kr, O<r< l/k 
q(r)= 1, l/k<r<l (2.18) 

r, 1 <r<2 

2, r > 2. 
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q(r) 
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q-r q=2/3+r/3 
(upwind second order) (third order) 

second order 

- TVD domain 

0 I 2 3 4 5 

FIG. 1. TVD domain. 

:ond order) 

In fact, this limiter is an analogue of Roe’s Superbee in his Lax-Wendroff TVD 
scheme [ 131. We also call this limiter Superbee, indicated by q’. In Fig. 1, it is seen 
that the most compressive TVD-satisfying limiter function is 

1 

0, rd0 

q(r) = kr, 0 < r d 2/k (2.19) 
2, r > 2/k. 

Usually this limiter is too compressive. It will turn the sine wave into a square wave 
when it is applied to the linear wave equation (see Section 4). This limiter is thus 
named “Supercompressive,” denoted by qp. Another limiter which is of particular 
interest in this paper is 

1 

0, rd0 
q(r) = kr, O<r<l/k (2.20) 

1, r > l/k. 

When fully implicit schemes are employed, k = co. That means the resulant scheme 
possesses no dissipation away from local extrema. 

3. COMPARISON OF OSHER-CHAKRAVARTHY AND YEE TVD SCHEMES 

3.1. Osher-Chakravarthy Scheme 

In [3], Osher-Chakravarthy derived a family of high-order TVD schemes. For 
the linear scalar equation (2.8), the numerical flux function takes the form 

h / + If2 = CUJ + (3.la) 
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where cp is a parameter and - 1 6 cp 6 1. The symbols ̂  and A shown over df denote 
flux-limited values of dfand are computed as 

&yz= minmod(c AU,+ ,,*, PC Aujp ,,*) 

d&p ,,* = minmod(c Auip ,iz, PC Au,, ,,2), 
(3.lb) 

where the minmod function is defined as 

minmod(x, y) = 0, xy<o 
sign(x) mid I4 I YI ), xy20. 

Actually, we can rewrite (3.1) as (2.9a) with 

1-q 1 
4Cr,) = T $tri) + 2 riti - 2 

0 'i 

(3.2) 

(3.3a) 

where 
Il/(r,) = minmod( 1, flyi). (3.3b) 

It is now necessary to decide the range of /3 which makes the scheme TVD. 
Obviously, the following can be obtained: 

0, rd0 

+,+J+C, O<r<l//3 

q(r)= l+cp 
1-V 2+7j-r, lllJ<r<B 

- 2P’ 
l+cp+l-cp 

2 
t->/l. 

So, clearly, 

max(q(r)) = 2 
l+cp+l-cp 

2 P 

and 

max(q(r)/r) = !++!+ 

Now the follwing should be satisfied: 

max(q(r)) d 2 
and 

max(q(r)lr) d 
2 

241 -v) 
-2=k. 

(3.4) 

(3Sa) 

(3.5b) 

(3.6a) 

(3.6b) 
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Thus it is required that 

( 3-q 2k-l+cp 
B<min - 

1-q’ > l+cp . (3.7) 

For q = 1, i.e., the backward Euler scheme, k --* co, then 

For q = 0, i.e., the explicit scheme, 

k = 2( l/v - 1 ), (3.9) 

where 

v = cl. (3.10) 

Thus, k depends on v, and so does pm,,. If we fix the CFL number to, say, 4, we 
have 

and then 

k=4 (3.11a) 

Bmax=min ( 3-q 7+(p - - 
1-cp’l+cp > 

(3.1 lb) 

Table I shows the maximum j? for different values of cp (v = 4). 
For each value of cp, the respective limiter function is plotted in Fig. 2. It is shown 

that all the limiters are within the upwind-biased second-order domain. 

TABLE I 

&,,, for Explicit Osher-Chakravarthy 
Scheme with v = 4 

9 Underlying scheme B mai 

l/3 Third-order 4 
-1 Fully upwind 2 

0 Fromm’s 3 
112 Low TE second-order 5 

1 Central 4 
-l/3 Un-named 512 
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t 

FIG. 2. Limiter functions. 

3.2. Yee Scheme 

In [4], Yee generalized the works of Davis [S] and Roe [6] and introduced the 
symmetric TVD scheme. Again, for the scalar wave equation, the numerical flux 
function is 

with 

hj+,,,=tC(1Aj+l+UI)-~~(l-Q)d~,+,,2 

Q  = Q(r,Z 1j27 r;+ I,z) 

(3.12a) 

(3.12b) 
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and 

'MI+ 312 
'i++ 112 = ~ 

A"j- I/2 -- 
Au,, ,/$ ‘j+ II2 - Aui, 1/2’ (3.13) 

It is clear that r,; 1,2 is identical to the previously defined rj. Yee’s typical limiter 
functions are 

Q(r+, ~ r )=minmod(r+, r-, 1) (3.14a) 

Q(r+, r-)=minmod(l, r+)+minmod(l, r-)- 1 (3.14b) 

Q(r+, r - ) = minmod(2,2r+, 2r, OS(r + + r ~ )). (3.14c) 

The difference in the definition of the limiter functions is obvious. Yee’s limiters are 
equally dependent on the upwind and downwind gradients which makes the name 
symmetric TVD natural. Comparing (3.12) and (2.9), we see that 

q = Q(r,L I/~ 3 r,; 1j2). (3.15) 

Obviously, with a proper choice of CFL-like conditions, that is, AC < const, these 
limiters satisfy the conditions (2.15). If the backward Euler scheme is used for time 
discretisation, the Yee scheme is unconditionally TVD. It needs to be pointed out 
that Q in (3.14b) can be negative. So Q should return to zero once a negative value 
is obtained from (3.14b). Because of the symmetric property of Yee’s TVD scheme, 
limiter functions (3.14) introduced extra dissipation even if the solution is relatively 
smooth. Take limiter (3.14a), for example. If 0 < r + < r ~ < 1, then Q will be equal 
to r + instead of r ~. That means 

q<ri. (3.16) 

Hence this function lies outside of the upwind-biased second-order TVD region. 
The result of this is that it includes extra dissipation because the dissipation coef- 
ficient (1 - r + ) is larger than (1 - r ~ ). The extra amount of dissipation the Yee 
scheme possesses usually does no harm to the solution of Euler equations. 
However, when it is used to solve the Navier-Stokes equations, especially for 
problems at high Reynolds number, caution needs be exercised to ensure that the 
numerical dissipation does not exceed the physical dissipation. Otherwise, the 
solution would be meaningless. 

Remedies to make Yee’s TVD less dissipative while maintaining its TVD 
property are now presented. The limiter functions are formed according to the 
specific wave direction; i.e., 

1 + sign(c) . Q(r+,rp)= 2 mmmod( 

Q(r+, rp)= ’ +sy(c)minmod( 

1 
1, r-)+ -sign(c) mmmod( 1, r 

2 
+ ) (3.17a) 

or-)+ 
1 

1, -sign(c) mmmod( 1, 2 or + ), (3.17b) 
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where 1 < o < GO for fully implicit schemes. Limiters (3.17a) and (3.17b) are called 
MY1 and MY2, respectively. MY2 is expected to be very useful for viscous flow 
calculations. Numerical experiments as outlined in the next section do show that 
these modified Yee schemes give better results. 

4. DISCUSSION OF NUMERICAL RESULTS 

4.1. The first numerical experiment is performed on the linear wave 
equation (2.8). The explicit schemes (q = 0) of Osher-Chakravarthy and Yee are 
employed. As a result, the schemes are only first-order accurate in time but second- 
order in space. However, some of the results obtained are strikingly good. For the 

FIRST OROER 1 

FIG. 3. Square wave propagation. 

581197!1-5 
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following calculations, a fixed CFL number of 4 is used throughout. Fifty-one time 
step for the square-wave calculation, and 27 time steps for sine wave calculation, 
are propogated. 

For the Yee scheme, two limiters are employed, i.e., those given by (3.14a) and 
(3.14~). They are called Yl and Y2, respectively. For the Osher-Chakravarthy 
scheme, different values of cp are selected and &,,,, is used. 

Also present are results using Superbee and Supercompressive. For the linear 
advection problem, the MY 1 limiter as modified in Section 3 is identical to the 
Osher-Chakravarthy scheme with cp = 1 and j3 = 1. 

Figure 3 shows results for the square wave calculation. The solid line represents 
the exact solution. It can be seen that the Supercompressive limiter gives the best 

I SUPERCOMPRESSIVE 1 

FIG. 4. Sine wave propagation. 
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result and cannot be differentiated from the exact solution. The next best result 
comes from the solution utilizing Superbee, followed by the Osher-Chakravarthy 
scheme with cp = t, /I = 5 and cp = 4, /I = 4, respectively. 

As expected, the Osher-Chakravarthy scheme with any value of cp gives better 
results than the Yee scheme as far as resolution is concerned. Comparing the results 
from Yl, Y2 and the results from the Osher-Chakravarthy scheme, it is seen clearly 
that Yee scheme gives the most dissipative results downstream of steep gradients. 
This is due to the fact that q(r) < r at such places. The modified Yee schemes give 
superior results than the original schemes. It is also obvious that Y2 gives better 
results than Y 1 and the Yee scheme gives better results than the first-order scheme. 

Figure 4 illustrates the results for the sine wave calculation. It is seen that both 
Supercompressive and Superbee are over compressive. It is also found that any 
value of q, /I,,,,, gives a slightly “squared” sine wave as can be seen in Fig. 4. It 
appears that the results given by Yl and Y2 have a better agreement with the exact 
solution than those given by the Osher-Chkravarthy scheme. The reason behind 
this phenomenon, is believed to be that the time-stepping approach is only tirst- 
order accurate so that a negative second-order dissipation term is embedded. This 
explains the slight “squaring” effect on top of the sine wave even in the results given 
by MY1 and MY2. 

4.2. The second test problem is the quasi-one-dimensional nozzle problem. 
The governing equation for this problem is 

au aF(u) 
at+ --H(U)=O, (4.1) 

where 

u+], F=K,;;$),, W)=[Pa+] (4.2) 

with rc, the cross area of the nozzle, a function of x. The configuration considered 
(see Fig. 5) is a divergent nozzle [lo] with 

K(X) = 1.398 + 0.347 tanh(0.8x - 4). (4.3) 

FIG. 5. Divergent nozzle. 
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FIG. 6. Density distribution 

The flow condition is supersonic at the entrance and subsonic at the exit, divided 
by a normal shock. The computational domain is selected to be 0 6 x d IO, 
and a very coarse even-spaced mesh of Ax = 0.5 is used to evaluate the resolution 
capacity of the scheme. The schemes are extended to a system of conservation laws 
according to the technique employed in [lo]. Roe’s approximate Riemann solver 
is employed to define the local characteristics. For objective comparison no entropy 
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FIG. 6-Continued 

enforcement is applied. An implicit method using backward Euler scheme in time 
is utilised. For more details, see [ 1, lo]. 

Figure 6 presents the results for the Yee, modified Yee and Osher-Chakravarthy 
schemes with different choices of limiters and relevant parameters. In the 
experiments with cp = i and cp = f, it is found that fl,,,,, will give slightly oscillatory 
results. It is speculated that these schemes are over compressive with the result that 
instability has set in resulting in the overshoot near the shock wave. The upstream 
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part of the shock is seen to be smeared by the first-order scheme. All the rest of the 
schemes demonstrated almost equally good quality in their shock resolution 
capacities. 

4.3. The last experiment chosen is to test the ability of the different TVD 
schemes to resolve a boundary layer. For this purpose, a shock wave/boundary 
layer interaction problem is selected. The flowfield representing this interaction is 
sketched in Fig. 7. The oblique shock wave is generated externally and is incident 
upon a boundary layer on a flat plate. If the shock is strong enough, the boundary 
layer will separate from the surface of the plate and reattach downstream. The 
separation region is a demanding one to calculate and therefore serves as a 
good test for a numerical method. The computational domain is chosen to be 
-0.02 <x < 0.3 and 0.0 6 y < 0.1215. The grid is composed- of 33 x 33 points. The 
Reynolds number based on a reference length of 0.16 is taken to be 296,000. The 
free stream Mach number is 2.0. The flat plate is introduced from x = 0.03. A shock 
is imposed at x=0, y =0.1215 such that it slopes to the flat plate at 32.6”. The 
governing equations are the two-dimensional Navier-Stokes equations, 

au aE aF aE aF. -+-+-=-2++-, 
at ax ay ax ay 

where 

INCIOENT 8HocK 

\ 

SEPARATION REATfACHMEN 
POINT POINT 

(4.4) 

(4.5) 

FIG. 7. Sketch for shock boundary layer interaction. 
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with 

P e=-++(u2+02) 
y-l 2 

Lx=343 

a~ au 
7 .Tv=p -+- .( > ay ax 

P aT - 
q~x=(y-l)M2,RePr~x 

P aT - 
q-v=(y-l)MZ,RePray’ 

where p is the coeffkient of viscosity. 

t A-", _,______-_____-_-- -I 
,,., ___ ---- __-_ _____ 
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FIG. 8. Plots of velocity direction and skin friction coefficient of the Yee scheme. 
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Out of this. the subset 

au aE aF -+-+-=o 
at ax ay (4.71 

is the Euler equations of inviscid compressible flow. In the numerical experiment, 
the flux vectors E and Fare discretised using a TVD scheme, and the viscous terms 
(E, and F,) are discretised using central differences. Roe’s approximate Riemann 
solver is employed to define the local characteristics. No entropy modification is 
employed. Then the implicit factorization method is utilised to solve the resultant 
system. See [ 10, 111 for details. 

Figures 8, 9, and 10 show plots of the velocity direction and skin friction coef- 
ficient for calculations with the Yee, modified Yee, and Osher-Chakravarthy 
schemes, respectively, since these two parameters are the most distinguishing. The 
results are compared with the results from MacCormack [12]. From the velocity 
plot, we can see clearly that both the modified Yee scheme and the 
Osher-Chakravarthy scheme resolved the separation very well while the Yee 
scheme did not. Yl limiter gave an unseparated flow pattern. Y2 gave a slightly 
separated flow, but is not at all satisfactory. It is noticed that MY2 is a very 
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FIG. 9. Plots of velocity direction and skin friction coefflent of the modified Yee scheme. 
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FIG. 10. Plots of velocity direction and skin friction coefficient of the Osher-Chakravarthy scheme. 

promising lim iter to attack the viscous flows at high Reynolds number. It is much 
better than MYl. In the test, the same basic computer code was used. Only the 
inviscid flux subroutine was changed. Thus it seems reasonable to conclude that the 
original Yee scheme did introduce extra viscosity and that this viscosity exceeded 
the physical viscosity such that unrepresentative results are obtained. 

5. CONCLUDING REMARKS 

Although TVD schemes have been applied in inviscid flow solutions very success- 
fully, their capacity to resolve viscous shear layers is still quite unclear. By unifying 
and comparing two TVD schemes, namely the Osher-Chakravarthy and the Yee 
scheme, we see that the former is much less dissipative than the latter. This property 
may not affect the inviscid flow region very much. However, when a viscous solu- 
tion at high Reynolds number is sought, they could result in dramatically different 
solutions. The paper demonstrates that the dissipation imbedded in the schemes 
may be the cause. When physical dissipation is overwhelmed by numerical dissipa- 
tion, the solution will be unrepresentative. A “numerical solution” in this case will 
be valueless. The goal then is to resolve the problem with the least numerical 
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dissipation possible. The modified Yee schemes are therefore suggested to approach 
that goal. 
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